一.文献名字和作者
Convolutional Neural Networks at Constrained Time Cost,CVPR 2015
二.阅读时间
2015年6月30日
三.文献的目的
作者希望在保持计算复杂度的前提下,通过改动模型深度和卷积模板的參数来提高CNN的准确率。作者通过大量的实验来找到网络结构中不同的參数的重要性,并在ImageNet2012数据集上面取得有竞争力的效果。
四.文献的贡献点
作者的贡献主要在于通过各种对照实验来说明不同的參数对于准确率的影响。理论方面的贡献点比較少。
作者通过实验。得到以下两个关于深度的现象:1.深度是影响准确率的第一要素;2.虽然深度是十分重要的,可是假设深度过深的话。准确率也会出现下降的情况。
五.使用的数据库
ImageNet2012数据集
六.实验结果
主要部分还是各种改动后的模型的对照。与主流算法的对照主要集中在准确率不低的同一时候,计算复杂度也比較低。
版权全部,欢迎转载。转载请注明出处,谢谢
转载于:https://www.cnblogs.com/hrhguanli/p/5096606.html
原文链接:https://blog.csdn.net/weixin_30342827/article/details/98806007
本站声明:网站内容来源于网络,如有侵权,请联系我们,我们将及时处理。
本博客所有文章如无特别注明均为原创。
复制或转载请以超链接形式注明转自起风了,原文地址《Convolutional Neural Networks at Constrained Time Cost(精读)》
复制或转载请以超链接形式注明转自起风了,原文地址《Convolutional Neural Networks at Constrained Time Cost(精读)》
还没有人抢沙发呢~